Date: 21.2.2011
Researchers from Woods Hole Oceanographic Institution (WHOI) have joined colleagues from New York University (NYU) and NOAA to investigate this phenomenon and report that the tomcod living in the Hudson River have undergone a rapid evolutionary change in developing a genetic resistance to PCBs.
Although this kind of reaction has been seen when insects develop resistance to certain insecticides, and bacteria to antibiotics, "This is really the first demonstration of a mechanism of resistance in any vertebrate population," said Isaac Wirgin of NYU's Department of Environmental Medicine and leader of the study. Moreover, he said, the team has found that "a single genetic receptor has made this quick evolutionary change possible."
Looking at the ability of the fish to respond to the contaminants, the researchers found the primary changes occurred in a receptor gene called AHR2, which is important in mediating toxicity in early life stages and can control sensitivity to PCBs.
Source:
Woods Hole Oceanographic Institution
Original Paper:
Isaac Wirgin, Nirmal K. Roy, Matthew Loftus, R. Christopher Chambers, Diana G. Franks and Mark E. Hahn. Mechanistic Basis of Resistance to PCBs in Atlantic Tomcod from the Hudson River. Science, 17 February 2011 DOI: 10.1126/science.1197296
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Práce - Nabidky prace
Plant biotechnology - Information about plant biotechnology
Nano-nutrients can blunt effects of soil contamination, boost crop yields
First lung cancer vaccine given to patient in international trial