Date: 20.10.2014
Scientists at the University of Kentucky, led by nano-biotechnologist Peixuan Guo, have made some critical discoveries over the past year into the operation of biomotors, the molecular machines used by viruses and bacteria in the packaging of DNA.
Biomotors function similarly to mechanical motors but on a nano-scale. Last year, Guo's team reported the discovery of a new, third class of biomotor, unique in that it uses a "revolution without rotation" mechanism. Rotation is the turning of an object around its own axle, as Earth does every 24 hours. Revolution is the turning of an object around a second object, as Earth does around the sun.
Recently, Guo's team reported that these revolution biomotors are widespread among many bacteria and viruses.
Guo, director of the Nanobiotechnology Center and the William Farish Endowed Chair of Nanobiotechnology at the Markey Cancer Center and UK College of Pharmacy said these biomotors are of great interest to medical researchers.
"DNA-packaging technology has tremendous potential applications in the diagnosis and treatment of viral diseases and cancers, as well as in personalized medicine and high-throughput human genome sequencing," he said. "The DNA packaging motor itself can serve as a high efficient drug target for the development of anti-viral and anti-bacterial therapy."
Guo hopes the current findings will generate new momentum in the viral-assembly field among young scientists.
In his early career, as a graduate student in Dwight Aderson's lab, Guo constructed the first viral motor outside the cell, the DNA-packaging motor of bacteria virus phi29. He also discovered one of the vital components of the motor, the six-membered RNA ring that gears the phi29 DNA-packaging motor. His postdotoral experience at NIH with Bernard Moss, a scientist in vaccinia virus studies and a member of the National Academy of Sciences, expanded his vision on the DNA packaging of animal and human viruses...
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Animal Biotechnology - Information about Animal Biotechnology
Charles University - Charles University in Prague
Tick-borne red meat allergy prevented in mice through new nanoparticle treatment
Reduce, reuse, reflycle: How genetically modified flies can reduce waste and keep it out of landfills