Date: 2.10.2015
Biologists at ETH Zurich have developed a method that, for the first time, makes it possible to measure concentration changes of several hundred metabolic products simultaneously and almost in real time. The technique could inspire basic biological research and the search for new pharmaceutical agents.
Genomics, proteomics, metabolomics. Scientists who work in a field that ends with the suffix -omics analyse the totality of something. In the case of metabolomics, it is the totality of all metabolites of a cell or organism. The research groups of Uwe Sauer, professor of Systems Biology at ETH Zurich, and Nicola Zamboni, group leader at the Institute of Molecular Systems Biology, are among the leaders in this field. They have now developed a method by which they can identify the concentration of hundreds of metabolites simultaneously and almost in real time.
The analysis of all metabolites in one go is not particularly easy since metabolites are a very diverse class of biological substances. "Various sugars, fats, messenger materials and amino acids belong to this group - thus, completely different molecules. Their only similarity is that they are small, at least compared with proteins and RNA molecules that occur on a mass scale in cells," explains Sauer.
For a long time, the simultaneous measurement of hundreds of metabolites in a fluid - for instance, urine or blood - or in cells was very time consuming. Most biologists used methods in which the substance mixture was first separated by chromatography and then the separated ingredients were identified in a mass spectrometer.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology company - list of biotechnology companies
Enzyme biotechnology - Information about Enzyme biotechnology
Designing long-lived peptides for more powerful medicines
Gene-edited cells could halt multiple sclerosis progression