Date: 25.7.2016
International research led by The Australian National University (ANU) has found how plants, such as rice and wheat, sense and respond to extreme drought stress, in a breakthrough that could lead to the development of next-generation drought-proof crops.
Lead researcher Dr Kai Xun Chan from the ANU Research School of Biology said the team discovered an enzyme that senses adverse drought and sunlight conditions, and how it works from atomic to overall plant levels.
"The sensor in plant leaves is constantly sensing the state of its environment in terms of water and light levels," Dr Chan said. "The sensor is able to sense when conditions become unfavourable, such as during extreme drought stress, by changing itself into a form with altered shape and activity.
"This sets off a 'fire alarm' in the plant, telling it to respond to drought by making beneficial chemical compounds, for instance. But in the field, this can occur too late and the plant would have suffered damage already.
"If we can get the alarm to go off at the first signs of water deficit, we can help the plant survive severe droughts."
More drought-tolerant crops are crucial to helping ensure global food security and can reduce the impact of drought on the national economy. A 2015 Climate Council report found that the Australian GDP fell one per cent due to drought and lower agricultural production in 2002 and 2003.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotech Jobs - Biotechnology jobs at bio.com
Biotechnology Journals - Plant, environmetal, animal biotechnology journals
Molecular morphers: DNA-powered gels shape-shift on command
Tiny magnetic robots could treat bleeds in the brain