Date: 19.3.2014
Overcoming a major limitation to the study of the origins and progress of human disease, Yale researchers report that they have transplanted human innate immune cells into mouse models, which resulted in human immune responses.
This groundbreaking study has reproduced human immune function at a level not seen previously, and could significantly improve the translation of knowledge gained from mouse studies into humans. The study is published online in Nature Biotechnology.
The innate immune system is the body's first line of defense against bacteria and viruses, and provides the adaptive immune system with the necessary information to create custom-made B and T cells that target specific bacterial or viral pathogens. Humanized mice are often used for studies of human immune responses, but until now the translation has been imperfect because existing mouse models do not permit efficient development of human innate immune cells.
The Yale team was able to overcome this obstacle by combining human versions of four genes encoding cytokines—proteins that support immune cell development—when transplanting a human immune system into the mouse. These cytokines support the development and functions of many elements of the innate immune system.
Further, the researchers observed that transplanted disease-fighting human macrophage cells were able to infiltrate a human tumor graft in the mouse strains in a manner similar to what happens in human patients.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Science Magazine
Animal Biotechnology - Animals, animal biotech
Phage editing technology could lead to alternative treatments for antibiotic-resistant bacteria
Newly designed nanocrystals can kill bacteria under visible light