Date: 24.10.2014
Researchers at the New York University Polytechnic School of Engineering have broken new ground in the development of proteins that form specialized fibers used in medicine and nanotechnology.
For as long as scientists have been able to create new proteins that are capable of self-assembling into fibers, their work has taken place on the nanoscale. For the first time, this achievement has been realized on the microscale—a leap of magnitude in size that presents significant new opportunities for using engineered protein fibers.
Many materials used in medicine and nanotechnology rely on proteins engineered to form fibers with specific properties. For example, the scaffolds used in tissue engineering depend on engineered fibers, as do the nanowires used in biosensors. These fibers can also be bound with small molecules of therapeutic compounds and used in drug delivery.
Jin Kim Montclare and her collaborators began their experiments with the intention of designing nanoscale proteins bound with the cancer therapeutic curcumin. They successfully created a novel, self-assembling nanoscale protein, including a hydrophobic pore capable of binding small molecules. To their surprise, after incubating the fibers with curcumin, the protein not only continued to assemble, but did so to a degree that the fibers crossed the diameter barrier from the nanoscale to the microscale, akin to the diameter of collagen or spider silk.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology company - list of biotechnology companies
Cancer cells - Czech Scientists are Working to Find the Achilles†Heel of Cancer Cells
Gene-edited cells could halt multiple sclerosis progression
New method uses nanoparticles to reprogram exhausted immune cells