Date: 16.12.2016
The genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
They obtained new molecular evolutionary results that are relevant for biodiversity research: the loss and duplication of genes as well as the loss of regulative elements in its genome have both contributed to the rapid evolution of the seahorse. The results will be published as the cover story in Nature on 15 December 2016.
The questions underlying genome sequencing of how diversity emerges and what its genetic basis is, can be superbly answered through the example of the seahorse because numerous unique features evolved in the seahorse within a short time.
According to this study in Nature, evolution does not only act through changing major roles of genes, but it also influences regulatory elements (genetic switches) during evolution. Regulatory elements are DNA segments that control the function of genes. Some of them barely change during the course of evolution since they have important regulatory functions. But several such unchanging and seemingly crucial elements are missing in sea-horses.
This is also and especially the case for elements that are responsible for the typical development of the skeleton in fish, but also in humans. This is probably one of the reasons why the seahorse's skeleton has been so greatly modified. It lacks ribs, for example. Instead, its body is armoured with bony plates that add strength and better protection from predators. Additionally, its prehensile curly tail allows seahorses to be camouflaged and remain motionless by holding on to seaweed or corals. The genome sequences suggest that the loss of the corresponding regulatory sequence led to this ossification.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Environmental biotechnology - Information about Environmental biotechnology
Biotechnology Books - Search results of biotechnology books at Google
Study finds DNA scavengers can stop some antibiotic resistance from spreading
Reduce, reuse, reflycle: How genetically modified flies can reduce waste and keep it out of landfills