Date: 12.6.2017
Researchers in a New York cabbage patch are planning the first release on American soil of insects genetically engineered to die before they can reproduce.
It's a pesticide-free attempt to control invasive diamondback moths, a voracious consumer of cabbage, broccoli and other cruciferous crops that's notorious for its ability to shrug off every new poison in the agricultural arsenal.
"It costs $4-5 billion a year globally to manage this pest," said Anthony Shelton, a Cornell University researcher who's been studying the species for 40 years. "If you can manage it without using insecticides that can affect pollinators and other non-target organisms, that's a real advantage."
Shelton is doing field tests of gene-altered moths at Cornell's Agricultural Experiment Station in Geneva, 160 miles west of Albany. Now, he's awaiting a permit from the U.S. Department of Agriculture to release the moths freely in a 10-acre cabbage patch at the research center. He hopes to do that this summer.
The laboratory-bred moths are the creation of biotech firm Oxitec, which deployed similarly modified mosquitoes in Brazil, Panama and the Caribbean in the fight against dengue fever and other diseases. The company hopes to conduct the first U.S. release of the gene-altered mosquitoes in Florida later this year.
The moths have a synthetic "self-limiting" gene that makes their female larvae die before they mature. Lab-bred males are released to breed with wild females, reducing the population over time by suppressing reproduction.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology company - list of biotechnology companies
BIO.com - Biotechnology News, Jobs, Software, Protocols, Events
New method uses nanoparticles to reprogram exhausted immune cells
These 3D model brains with cells from several people are first of their kind