Date: 6.11.2015
Usually the microbe S. islandicus is found in hot and acidic volcanic springs, but now the microbe has also found its way to the labs of University of Southern Denmark. Here researchers have for the first time showed that the exotic microbe is capable of delivering drugs to the human body.
The microbe S. islandicus has a strange and unique talent for thriving in acidic environments. This talent would allow the microbe to safely pass through the human stomach, where harsh acidic conditions rule, and this makes the microbe interesting for scientists working with delivering drugs to the human body.
"One of the major challenges in pharmacy is to find ways to carry and protect drugs on their passage through the stomach. Many drugs may be absorbed through the intestines, so it would be a great help to be able to transport drugs safely through the stomach to the intestines", explains Sara Munk Jensen
Jensen has just completed her Ph.D. work on how to use lipids from the cell membranes of extremophilic microorganisms to design drug carriers that transport and protect drugs in the human body.
This is relevant for different drugs as growth hormones, vaccines and insulin. Many diabetics need to daily inject insulin directly into their body, and they would benefit greatly by taking insulin in a tablet instead. Not only is it easier to take a tablet than inject; when insulin is absorbed from the small intestine it is released into the body in a more natural way than when injected, and this has the potential to improve the patient's treatment.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology education - National biotechnology education centre
Science Blogs - Blogs about science: Medicine, Biology, Physical science, ...
Toxic glass kills 99% of bone cancer without harming healthy cells
Nanotubes, nanoparticles and antibodies detect tiny amounts of fentanyl