Date: 8.5.2017
The synthetic biologists from Imperial College London have re-engineered yeast cells to manufacture the nonribosomal peptide antibiotic penicillin. In laboratory experiments, they were able to demonstrate that this yeast had antibacterial properties against streptococcus bacteria.
The authors of the study, which is published today in the journal Nature Communications, say their new method demonstrates the effectiveness of using this kind of synthetic biology as a route for discovering new antibiotics. This could open up possibilities for using re-engineered yeast cells to develop new forms of antibiotics and anti-inflammatory drugs from the nonribosomal peptide family.
Nonribosomal peptides are normally produced by bacteria and fungi, forming the basis of most antibiotics today. Pharmaceutical companies have long experimented with nonribosomal peptides to make conventional antibiotics.
The rise of antimicrobial resistance means there is a need to use genetic engineering techniques to find a new range of antibiotics from bacteria and fungi. However, genetically engineering the more exotic fungi and bacteria - the ones likely to have antibacterial properties - is challenging because scientists don't have the right tools and they are difficult to grow in a lab environment, requiring special conditions.
Baker's yeast on the other hand is easy to genetically engineer. Scientists can simply insert DNA from bacteria and fungi into yeast to carry out experiments, offering a viable new host for antibiotic production research. The rise of synthetic biology methods for yeast will allow researchers to make and test many new gene combinations that could produce a whole new range of new antibiotics.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Science - Daily Czech science news
Biotechnology - Biotechnology information directory
Implants made of your blood could repair broken bone
Mice created with full human immune systems for the first time