Date: 13.6.2016
A research team has developed rice crops with an improved ability to manage their own pH levels, enabling them to take up significantly more nitrogen, iron and phosphorous from soil and increase yield by up to 54 percent.
Rice is a major crop, feeding almost 50 percent of the world's population and has retained the ability to survive in changing environmental conditions. The crop is able to thrive in flooded paddy fields -- where the soggy, anaerobic conditions favour the availability of ammonium -- as well as in much drier, drained soil, where increased oxygen means more nitrate is available.
Rice contains a gene called OsNRT2.3, which creates a protein involved in nitrate transport. This one gene makes two slightly different versions of the protein: OsNRT2.3a and OsNRT2.3b. Following tests to determine the role of both versions of the protein, Dr Miller's team found that OsNRT2.3b is able to switch nitrate transport on or off, depending on the internal pH of the plant cell.
When this 'b' protein was overexpressed in rice plants they were better able to buffer themselves against pH changes in their environment. This enabled them to take up much more nitrogen, as well as more iron and phosphorus. These rice plants gave a much higher yield of rice grain (up to 54 percent more yield), and their nitrogen use efficiency increased by up to 40 percent.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology Industry Organization - BIO.org
Biotechnology links - Useful biotech links for you
Sea sponge-inspired microlenses offer new possibilities in optics
Engineered enzymes may help plants adapt to higher temperatures