Date: 8.11.2017
Scientists working to develop a 'game-changing' new antibiotic have made a significant advance towards creating commercially viable drug treatments by producing two simplified synthetic versions of the substance which are just as potent at killing superbugs like MRSA as its natural form.
The breakthrough by researchers at the University of Lincoln, UK, marks another important step to realising the potential of teixobactin in aiding the global fight against antibiotic-resistant pathogens. Teixobactin is a recently discovered natural antibiotic which many in the international scientific community believe could lead to creation of the first commercially viable new antibiotic drug in 30 years.
The Lincoln team has successfully synthesized new simplified versions of teixobactin which harness the same powerful antibiotic effects in a way that could be produced on a commercial scale.
Until now, scientists attempting to synthesise teixobactin believed they needed to use cationic (or positively charged) amino acids which bind to the bacterial target using a 'side chain'. This meant they had to use either the very rare amino acid found naturally in teixobactin, called enduracididine, or alternative ones which had lower potency against superbugs.
Lincoln team has now successfully replaced enduracididine – which holds position ten – with two alternative amino acids which are not positively charged. These amino acids lack the 'binding' part, over-turning the prior understanding that enduracididine is essential for to so-called 'target binding' to be highly potent against superbugs.
With this new knowledge, synthesised versions of teixobactin can be more easily developed, taking the process from up to 30 hours to just ten minutes.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Enzyme biotechnology - Information about Enzyme biotechnology
Brigady pro studenty - Brigady pro studenty
Molecular morphers: DNA-powered gels shape-shift on command
Bacteria biofilter reduces pig farm methane emissions