Date: 7.6.2013
Researchers from the UCLA have isolated a new population of primitive, stress-resistant human pluripotent stem cells easily derived from fat tissue that are able to differentiate into virtually every cell type in the human body without genetic modification.
The cells, called Multi-lineage Stress-Enduring (Muse-AT) stem cells from fat, or adipose, tissue, were discovered by "scientific accident" when a piece of equipment failed in the lab, killing all the stem cells in the experiment except for the Muse-AT cells. The research team further discovered that not only are Muse-AT cells able to survive severe stress, they may even be activated by it, said study senior author Gregorio Chazenbalk.
These pluripotent cells, isolated from fat tissue removed during liposuction, expressed many embryonic stem cell markers and were able to differentiate into muscle, bone, fat, cardiac, neuronal and liver cells. An examination of their genetic characteristics confirmed their specialized functions, as well as their capacity to regenerate tissue when transplanted back into the body following their "awakening."
This population of cells lies dormant in the fat tissue until it is subjected to very harsh conditions. These cells can survive in conditions in which usually only cancer cells can live," Chazenbalk said. "Upon further investigation and clinical trials, these cells could prove a revolutionary treatment option for numerous diseases, including heart disease, stroke and for tissue damage and neural regeneration."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Environmental biotechnology - Information about Environmental biotechnology
Biotechnology events - Database of international biotechnology events.
A roadmap for using viruses to enhance crop performance
Mashed up purple marine bacteria makes an excellent eco-friendly fertilizer