Date: 22.6.2015
Researchers at the University of California, Berkeley, have developed an easy way to put bacteria under a molecular lock and key in order to contain its accidental spread.
The method involves a series of genetic mutations that render the microbe inactive unless the right molecule is added to enable its viability.
The findings show promise as a practical method of biocontainment as advances in synthetic biology and genetic engineering prompt more research into techniques to control newly created organisms, said senior author J. Christopher Anderson, an associate professor of bioengineering.
The researchers worked with a strain of E. coli commonly used in research labs, targeting five genes that are required for the organism to survive and devising easy ways to modify them. They created mutations in the genes that would require the addition of the molecule benzothiazole in order to function.
'This approach is very robust and simple in that it only requires a few mutations in the genome,' said Anderson. 'The molecule serves as the key, and we engineer the lock.'
The technique turns the bacteria into a synthetic auxotroph, an organism modified to require a particular compound for its growth. It could potentially be applied to organisms being engineered to treat diseases, the researchers said. Because those pharmaceuticals entail the introduction of organisms into the body, mechanisms are needed to ensure that the organism is activated only when needed.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology projecst no.10 - 10th page of our biotechnology projects database
Science Magazine
Novel nanoparticles can trap and neutralize large amounts of SARS-CoV-2
Mice created with full human immune systems for the first time