Home pagePress monitoringSmart Thin Film Membranes Adopt Properties Of Guest...

Smart Thin Film Membranes Adopt Properties Of Guest Molecules

Date: 2.4.2007 

Virginia Tech researchers announced last year that they had created a nanostructured membrane that incorporates DNA base pairs in order to impart molecular recognition and binding ability to the synthetic material. This year they will show for the first time that these new films, membranes, and elastomers are compatible with diverse organic and inorganic molecules and will adopt properties of the guest molecules. The research was presented as an invited talk at the 233rd national meeting of the American Chemical Society in Chicago March 25-29. Chemistry professor Tim Long's research group, students affiliated with the Macromolecule and Interfaces Institute (MII) at Virginia Tech, and the U.S. Army Research Laboratory created a block copolymer, where different monomers are linked in a sequential manner and form a nanostructured film. They used adenine and thymine nucleotides, two of the four DNA base pairs that recognize each other. Then the researchers experimented with different kinds of guest molecules with complementary hydrogen bonding sites (hydrogen has a low energy attraction to many types of atoms). ... Whole article: "www.medicalnewstoday.com":[ http://www.medicalnewstoday.com/medicalnews.php?newsid=66538]

Sifting Out Cure For HIV: Special Ceramic Membranes Could Filter Virus From Blood - HIV may one day be able to be filtered from human blood saving the lives of millions of people, thanks to a world-first innovation by Queensland University of Technology scientists (2.3.2007)

All Types of Carbon Nanotubes Penetrate Wide Variety of Cell Membranes - Over the past two years, researchers have demonstrated repeatedly that certain types of carbon nanotubes are among the most effective materials known for transporting proteins, genes, and drug molecules across the cell membrane (27.2.2007)

50 atoms thick membrane sorts individual molecules - A newly designed porous membrane, so thin it's invisible edge-on, may revolutionize the way doctors and scientists manipulate objects as small as a molecule (18.2.2007)

Controlling the Movement of Water Through Nanotube Membranes - By fusing wet and dry nanotechnologies, researchers at Rensselaer Polytechnic Institute have found a way to control the flow of water through carbon nanotube membranes with an unprecedented level of precision (16.2.2007)

 

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist