Date: 31.12.2021
Natural evolution is a slow process that relies on the gradual accumulation of genetic mutations. In recent years, scientists have found ways to speed up the process on a small scale, allowing them to rapidly create new proteins and other molecules in their lab.
This widely-used technique, known as directed evolution, has yielded new antibodies to treat cancer and other diseases, enzymes used in biofuel production, and imaging agents for magnetic resonance imaging (MRI).
Researchers at MIT have now developed a robotic platform that can perform 100 times as many directed-evolution experiments in parallel, giving many more populations the chance to come up with a solution, while monitoring their progress in real-time. In addition to helping researchers develop new molecules more rapidly, the technique could also be used to simulate natural evolution and answer fundamental questions about how it works.
"Traditionally, directed evolution has been much more of an art than a science, let alone an engineering discipline. And that remains true until you can systematically explore different permutations and observe the results," says Kevin Esvelt, an assistant professor in MIT's Media Lab and the senior author of the new study.
The technique described in the new Nature Methods paper, which the researchers have named phage and robotics-assisted near-continuous evolution (PRANCE), can evolve 100 times as many populations in parallel, using different conditions.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Brno University of Technology - university of technology in Brno
CVUT - Czech Technical University
Antarctic bacteria show promise as biocontrol agents for combating banana wilt
Silicon exoskeletons for blood cells: Engineered blood cells successfully transfused between species