Date: 13.10.2017
Using human induced pluripotent stem cells (iPSCs), a Massachusetts General Hospital research team has bioengineered functional small intestine segments that, when implanted into rats, were capable of deliver nutrients into the bloodstream.
"In this study we have been able to bridge the gap between differentiation of single cells - driving stem cells to become a specific cell type - and the generation of tissue that shows a higher level of function - in this instance vascular perfusion and nutrient absorption," says Harald Ott, MD of the MGH Department of Surgery and the Center for Regenerative Medicine, senior author of the report.
"While previous studies have reported successful differentiation of organoids - millimeter-small units of tissue - from iPSCs, we describe a technology that enables these smaller units of tissue to form larger-scale grafts that someday could be used as implanted replacement organs.
Several serious gastrointestinal diseases, including Crohn's disease, may lead to removal of all or part of the small intestine, leading to a condition called short bowel syndrome. While it sometimes can be treated with special diets, many patients need to rely on intravenous nutrition. While small bowel transplantation is a feasible treatment option, its availability is very limited because of the organ shortage.
"The next steps will be to further mature these grafts and to scale the construct to a human size, so that someday we may be able to provide a more accessible alternative to small bowel transplantation for patients with short bowel syndrome - ideally growing 'on-demand' patient-specific grafts that would not require immunosuppressive drugs."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotech Jobs - Biotechnology jobs at bio.com
Biotechnology events no 8 - Page 8 of our database of biotechnology events
Nanofibers made of copper-binding peptides disrupt cancer cells
Golden Lettuce genetically engineered to pack 30 times more vitamins