Date: 21.1.2015
Foodborne illnesses kill roughly 3,000 Americans each year and about 1 in 6 are sickened, according to the Centers for Disease Control and Prevention.
Yet most contaminated foods are never traced back to their source. That’s because existing methods to track tainted food following its supply chain from table to farm are highly inefficient, jeopardizing the health of millions and costing the food industry billions. A typical process to trace food includes interviewing consumers and suppliers and examining every detail of the supply chain, a tedious method that takes weeks at best to complete.
Lawrence Livermore National Laboratory (LLNL) researchers, in collaboration with the startup DNATrek, have developed a cost-effective and highly efficient method to accurately trace contaminated food back to its source. Lawrence Livermore originally designed the technology, known as DNATrax, to safely track indoor and outdoor airflow patterns.
“One of the unexpected capabilities from DNATrax was being able to apply it to food products,” said George Farquar, an LLNL physical chemist who led a team of researchers that developed the technology for biosecurity applications. “You can spray it on food products in the field to identify and track the source of the food.”
DNATrax are particles comprised of sugar and non-living and non-viable DNA that can serve as an invisible barcode. It’s an odorless and tasteless substance that’s been approved by the Food and Drug Administration as a food additive, safe for consumption. Think of it as a microscopic barcode that’s sprayed on food at the farm or processing plant.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Brno University of Technology - university of technology in Brno
Environmetal biotechnology - Information about environmetal biotechnology at Wikipedia
Microscopic vehicles propelled by swimming green algae could assist biological and environmental research
Antioxidant carbon dot nanozymes alleviate depression in rats by restoring the gut microbiome