Date: 9.7.2012
(Phys.org) Scientists from Stanford's Department of Bioengineering have devised a method for repeatedly encoding, storing and erasing digital data within the DNA of living cells.
Sometimes, remembering and forgetting are hard to do.
"It took us three years and 750 tries to make it work, but we finally did it," said Jerome Bonnet, PhD, of his latest research, a method for repeatedly encoding, storing and erasing digital data within the DNA of living cells.
Bonnet, a postdoctoral scholar at Stanford University, worked with graduate student Pakpoom Subsoontorn and assistant professor Drew Endy, PhD, to reapply natural enzymes adapted from bacteria to flip specific sequences of DNA back and forth at will. All three scientists work in the Department of Bioengineering, a joint effort of the School of Engineering and the School of Medicine.
In practical terms, they have devised the genetic equivalent of a binary digit — a "bit" in data parlance. "Essentially, if the DNA section points in one direction, it's a zero. If it points the other way, it's a one," Subsoontorn explained.
"Programmable data storage within the DNA of living cells would seem an incredibly powerful tool for studying cancer, aging, organismal development and even the natural environment," said Endy.
Researchers could count how many times a cell divides, for instance, and that might someday give scientists the ability to turn off cells before they turn cancerous...
... the whole article you can read on
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology Books - Huge database of biotechnology books
Charles University - Charles University in Prague
Study finds DNA scavengers can stop some antibiotic resistance from spreading
Porous nanofibrous microspheres show promise for diabetic wound treatment