Date: 25.9.2017
A multidisciplinary scientific team at Lawrence Livermore National Laboratory (LLNL) has made significant advances in developing a vaccine for chlamydia using synthetic biology, sponsored by a two-year National Institutes of Health (NIH) grant.
Chlamydia is the most common infectious sexually transmitted disease, caused by the gram-negative bacterium Chlamydia trachomatis. The infection is often asymptomatic, and when left untreated, the disease can cause severe chronic health issues such as permanent infertility, pelvic inflammatory disease and blindness. While antibiotic treatments for chlamydia infections exist, recurrences of the disease in the same patient are common and difficult to treat.
"Although antibiotics are used to treat chlamydia, early screening and diagnosis are key to prevent complications associated with long-term, untreated infections," said Wei He, a postdoctoral researcher at the Lab and the primary author of the paper. "It's important to note that individuals treated with antibiotics are more prone to reinfection, so working toward a vaccine is an essential step in treating this pervasive public health problem."
Vaccines interact with patient immune systems to produce active immunity, which provides protection from disease. They contain antigen – usually purified proteins, like a major outer membrane protein (MOMP) – that are expressed by the pathogen of interest. Upon vaccination, an antigen-specific immune response develops, protecting the patient from real-world infection.
"We're the first group in the world to use something called telodendrimer nanolipoprotein particles (tNLPs) to produce chlamydia membrane proteins in a cell-free environment," said Matt Coleman, the senior author on the paper.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology Events - Current biotechnology events
Bioenergy 2007 - Conference bioenergy 2007
Spinning artificial spider silk into next-generation medical materials
Toxic glass kills 99% of bone cancer without harming healthy cells