Date: 4.3.2019
Inserting or tweaking genes in plants is more art than science, but a new technique developed by University of California, Berkeley, scientists could make genetically engineering any type of plant – in particular, gene editing with CRISPR-Cas9 – simple and quick.
To deliver a gene, the researchers graft it onto a carbon nanotube, which is tiny enough to slip easily through a plant's tough cell wall. To date, most genetic engineering of plants is done by firing genes into the tissue – a process known as biolistics – or delivering genes via bacteria. Both are successful only a small percentage of the time, which is a major limitation for scientists seeking to create disease- or drought-resistant crops or to engineer plants so they're more easily converted to biofuels.
Nanotubes, however, are highly successful at delivering a gene into the nucleus and also into the chloroplast, a structure in the cell that is even harder to target using current methods. Chloroplasts, which have their own separate, though small, genome, absorb light and store its energy for future use, releasing oxygen in the process. An easy gene-delivery technique would be a boon for scientists now trying to improve the efficiency of light energy capture to boost crop yields.
The nanotube not only protects the DNA from being degraded by the cell, but also prevents it from being inserted into the plant's genome. As a result, the technique allows gene modifications or deletions that in the United States and countries other than the European Union would not trigger the designation "genetically modified," or GMO.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotech Jobs - Biotechnology jobs at bio.com
Brigady pro studenty - Brigady pro studenty
Tiny magnetic robots could treat bleeds in the brain
Recharging mitochondria – nanoflowers offer a new way to simulate energy production to improve aging ailments