Date: 4.2.2015
The lowly roundworm is the star of an ambitious Rice University project to measure the toxicity of nanoparticles.
The low-cost, high-throughput study by Rice scientists Weiwei Zhong and Qilin Li measures the effects of many types of nanoparticles not only on individual organisms but also on entire populations.
The Rice researchers tested 20 types of nanoparticles and determined that five, including the carbon-60 molecules ("buckyballs") discovered at Rice in 1985, showed little to no toxicity.
Others were moderately or highly toxic to Caenorhabditis elegans, several generations of which the researchers observed to see the particles' effects on their health.
"Nanoparticles are basically new materials, and we don't know much about what they will do to human health and the health of the ecosystem," said Li, an associate professor of civil and environmental engineering and of materials science and nanoengineering. "There have been a lot of publications showing certain nanomaterials are more toxic than others. So before we make more products that incorporate these nanomaterials, it's important that we understand we're not putting anything toxic into the environment or into consumer products.
"The question is, How much cost can we bear?" she said. "It's a long and expensive process to do a thorough toxicological study of any chemical, not just nanomaterials." She said that due to the large variety of nanomaterials being produced at high speed and at such a large scale, there is "an urgent need for high-throughput screening techniques to prioritize which to study more extensively."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
DNA - Deoxyribonucleic acid (DNA) at Wikipedia
Biotechnology Books no. 14 - 14th page of aour database of biotechnology books
Bacteria biofilter reduces pig farm methane emissions
Newly designed nanocrystals can kill bacteria under visible light